6 research outputs found

    The Change You Want to See (Now in 3D)

    Full text link
    The goal of this paper is to detect what has changed, if anything, between two "in the wild" images of the same 3D scene acquired from different camera positions and at different temporal instances. The open-set nature of this problem, occlusions/dis-occlusions due to the shift in viewpoint, and the lack of suitable training datasets, presents substantial challenges in devising a solution. To address this problem, we contribute a change detection model that is trained entirely on synthetic data and is class-agnostic, yet it is performant out-of-the-box on real world images without requiring fine-tuning. Our solution entails a "register and difference" approach that leverages self-supervised frozen embeddings and feature differences, which allows the model to generalise to a wide variety of scenes and domains. The model is able to operate directly on two RGB images, without requiring access to ground truth camera intrinsics, extrinsics, depth maps, point clouds, or additional before-after images. Finally, we collect and release a new evaluation dataset consisting of real-world image pairs with human-annotated differences and demonstrate the efficacy of our method. The code, datasets and pre-trained model can be found at: https://github.com/ragavsachdeva/CYWS-3

    ScanMix: Learning from Severe Label Noise via Semantic Clustering and Semi-Supervised Learning

    Full text link
    In this paper, we address the problem of training deep neural networks in the presence of severe label noise. Our proposed training algorithm ScanMix, combines semantic clustering with semi-supervised learning (SSL) to improve the feature representations and enable an accurate identification of noisy samples, even in severe label noise scenarios. To be specific, ScanMix is designed based on the expectation maximisation (EM) framework, where the E-step estimates the value of a latent variable to cluster the training images based on their appearance representations and classification results, and the M-step optimises the SSL classification and learns effective feature representations via semantic clustering. In our evaluations, we show state-of-the-art results on standard benchmarks for symmetric, asymmetric and semantic label noise on CIFAR-10 and CIFAR-100, as well as large scale real label noise on WebVision. Most notably, for the benchmarks contaminated with large noise rates (80% and above), our results are up to 27% better than the related work. The code is available at https://github.com/ragavsachdeva/ScanMix

    LongReMix: Robust Learning with High Confidence Samples in a Noisy Label Environment

    Full text link
    Deep neural network models are robust to a limited amount of label noise, but their ability to memorise noisy labels in high noise rate problems is still an open issue. The most competitive noisy-label learning algorithms rely on a 2-stage process comprising an unsupervised learning to classify training samples as clean or noisy, followed by a semi-supervised learning that minimises the empirical vicinal risk (EVR) using a labelled set formed by samples classified as clean, and an unlabelled set with samples classified as noisy. In this paper, we hypothesise that the generalisation of such 2-stage noisy-label learning methods depends on the precision of the unsupervised classifier and the size of the training set to minimise the EVR. We empirically validate these two hypotheses and propose the new 2-stage noisy-label training algorithm LongReMix. We test LongReMix on the noisy-label benchmarks CIFAR-10, CIFAR-100, WebVision, Clothing1M, and Food101-N. The results show that our LongReMix generalises better than competing approaches, particularly in high label noise problems. Furthermore, our approach achieves state-of-the-art performance in most datasets. The code will be available upon paper acceptance

    The change you want to see

    No full text
    We live in a dynamic world where things change all the time. Given two images of the same scene, being able to automatically detect the changes in them has practical applications in a variety of domains. In this paper, we tackle the change detection problem with the goal of detecting “object-level” changes in an image pair despite differences in their viewpoint and illumination. To this end, we make the following four contributions: (i) we propose a scalable methodology for obtaining a large-scale change detection training dataset by leveraging existing object segmentation benchmarks; (ii) we introduce a coattention based novel architecture that is able to implicitly determine correspondences between an image pair and find changes in the form of bounding box predictions; (iii) we contribute four evaluation datasets that cover a variety of domains and transformations, including synthetic image changes, real surveillance images of a 3D scene, and synthetic 3D scenes with camera motion; (iv) we evaluate our model on these four datasets and demonstrate zero-shot and beyond training transformation generalization. The code, datasets and pre-trained model can be found at our project page: https://www.robots.ox.ac. uk/˜vgg/research/cyws/
    corecore